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Abstract—In this paper, the functional transformations of variational principles in elasticity are
classified as three patterns : pattern I (relaxation pattern) is a generalized equivalent pattern in which
constraint conditions are transformed into natural conditions; pattern II (augmented pattern) is a
generalized equivalent pattern in which augmented conditions are transformed into natural con-
ditions; pattern III (equivalent pattern) is a pattern in which a nonconditional functional is
transformed into an equivalent functional with several arbitrary parameters. Pattern 1 is the well-
known pattern of Lagrange multipliers method : patterns II and III arc new patterns proposed in
this paper. On the basis of pattern III, generalized variational principles with scveral arbitrary
parameters are formulated, and the general and simple forms of the functional are defined. Many
existing functionals of variational principles in elasticity are special cases of this functional.

1. INTRODUCTION

The variational principles in elasticity have been systematically discussed in [1-4]. In this
paper, for the variational principles in elasticity, variables are classified as functional
variables and augmented variables; conditions are classified as forced conditions which
should be satisfied in advance by the functional variables, natural conditions (Euler equa-
tions and natural boundary conditions) and augmented conditions (the conditions or
relations between the augmented and the functional variables, as well as that between
various augmented variables). For instance, in the principle of potential energy the func-
tional is the potential energy, the displacement u is the functional variable and both the
stress ¢ and strain e are regarded as augmented variables. The displacement boundary
conditions at the fixed boundary are the forced conditions which must be satisfied in
advance by the functional variable u. The differential equilibrium equations and the force
boundary conditions at the free boundary both expressed in terms of displacement are the
natural conditions derived from the stationary condition of potential energy, while the
geometrical relations between the functional variable u and the augmented variable e, as
well as the stress—strain relations between the augmented variables ¢ and @, are considered
as augmented conditions.

When a statement of a variational principle is to be made, three aspects have to be
mentioned : (1) which variables are chosen to be the functional variables ; (2) which of the
conditions are used as the forced conditions and which of them are the augmented con-
ditions ; (3) how to define the energy functional—the natural condition can be derived from
stationary conditions of the functional.

The equivalent relation between two variational principles has been discussed fre-
quently in literatures, but sometimes the meaning of the word equivalent are not exactly
the same in different contexts. In order to have a clear and definite concept, in this paper
three different cases of the equivalent relations are defined as follows:

(1) Two variational principles are said to be generalized equivalent if both the principles
have the same set of variables and the same set of conditions, but their subsets of functional
or augmented variables are not the same; their subsets of forced, augmented or natural
conditions are not the same.
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(2) Two generalized equivalent variational principles are said to be equivalent if their
subsets of functional and augmented variables are the same separately: their subsets of

forced, augmented and natural conditions are the same separately.

(3) Two equivalent variational principles are said to be identical if their functionals
are identical or will be identical if a proportional factor is considered.
For later convenience of quoting, all the conditions of small displacement theory in
elasticity (including basic differential equations and boundary conditions) are listed as
follows, where three types of variables (displacement u, strain ¢ and stress o) are involved :

(1) Differential equilibrium equations:
Do+F=0 (involume V).
(2) Strain and displacement relations:
e~=D'u=0 (inV).
(3) Stress and strain relations :
c—Ae=0 or e—asc =0 (in V),
in which
A=a""
(4) Boundary conditions of given displacements:
u—ii=0 (on fixed boundary S,).
(5) Boundary conditions of given external forces:
Le—T =0  (on free boundary S,),
in which

u=[uow)’,
&= [exsysz Vyz Vax ny]Ta

T
6= [ox G,0; Ty Tax Txy] ’

F 1 —u —u 0 0
—u 1 —u 0 0
—u —pu 1 0 0
a=% 0 0 0 2(1+w 0
0 0 0 0 2(1+p)
| 0 0 0 0 0 2(1

0
0
0
0
0
+

p=| 0 a8y o 88z 0 aox

dfox 0 0 0 /o2 6/6y]

0 0 9d/oz odfoy 9dfox

(1.1)

(1.2)

(1.3)

(1.4

(1.5

(1.6)

(1.7
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! 0 0 O
L=|0 m O
0 0 n

-~ O X

m
n H, (1.8)
m 0
where /, m and n are the directional cosines of outward normal of the boundary.
In elasticity, various variational principles and their functionals have been proposed.

Among these functionals the most important ones may be listed as follows:
(1) Conditional and nonconditional potential energy functional n,(u) and =,,(u):

n,(u) = J 1D w)’A(D u)—Fu] dV -~ J‘ TTu ds, (1.9a)
1% Se
my,(u) = J (D u)’AD u)—Fu) dV

- f T7u dS— f (u—ii)"LA (D"u) dS. (1.9b)
S, s,

(2) Complementary energy functional n.(s):

(o) = '[ ! 6Tac dV—-J i’La dS. (1.10)
v s,

(3) Hellinger—Reissner functional[5, 6] nyg(u, g):

Ty (uo) = j [6"D"u—1 6"ag—Fu] dV— J TTudS- J‘ u-d)Lo dS. (1.11)
v s s,

(4) Hu—Washizu functional[7, 8] n,w(u, &, 0):

Tuw(u,8,6) = J [le"Ae—6" (e~D"u)—FTu} dV— J TTu dS— f (u—1i)"Lo dS.
4 Se S,
(1.12)

n,(u), 7,,(u) and n(g) are functionals with single variable, while nyg(u, ) and nyw(u, &, )
are functionals with two or three variables, respectively. It should be noted that in all these
functionals there is no arbitrary parameter involved.

In this paper, three patterns of functional transformation of variational principles in
elasticity are defined and generalized variational principles with several arbitrary parameters
are formulated. Henceforth, the following formula of integration by parts will be used :

J (Do)udV = — J' ¢’ (D'u) dV+ J‘ (Lo)"u dS. (1.13)
4 4 S

2. TRANSFORMATION PATTERN 1 OF THE FUNCTIONAL (RELAXATION PATTERN)

The original functional 7' is a conditional one ; the forced conditions are

$:=0 (in 1), 2.1

and the transformed functional n is a nonconditional one:
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7 = plo 4 z f AT, dt; 0))

where 4, is the multiplier. The functional variables of 1 consist of the functional variables
of n© and multiplier variables. The physical meaning of the multiplier variables can be
identified by the use of natural conditions of functional n*,

The feature of pattern I is to transform the conditional functional #‘ into non-
conditional functional #, n'© is generalized equivalent but not equivalent to n. The
forced condition (2.1) of ' is transferred into the natural condition of z®.

3. TRANSFORMATION PATTERN Il OF THE FUNCTIONAL (AUGMENTED PATTERN)

The feature of pattern II is that the nonconditional functional ‘=’ which has less
variables is transformed into a nonconditional functional n‘*’ which has more variables ;
the latter is a generalized equivalent to the former one. The augmented conditions of n'~)
are transferred into the natural conditions of n‘*),

Here we will explain in detail. Assume that functional n!~)(y) is the nonconditional
functional before the transformation which has less variables; y is the functional variable.
Assume that z is the augmented variable. The corresponding augmented conditions are

z—f(y)=0 (nV) 3.1

Then after transformation, the new functional n‘*)(y, z) is a nonconditional functional with
more variables; y and z are the functional variables. It will be determined by the following
expression :

1y, 2) = () +1Q (v, 2), an

in which Q is a positive definite quadratic integral for the augmented condition expression
on the left side of eqn (3.1):

Q= L dz—fOIClz—f ()] dV, (3.2)

where C is a positive definite symmetric matrix, and # is an arbitrary nonzero parameter.
It can be proved that the original and the transformed functionals n{~)(y) and n‘*)(y, z) are
generalized equivalent to each other. For this reason, we present the relevant theorem of
pattern II and its proof as follows :

Theorem. The new functional n{*)(y, z) defined by eqn (II) and the original functional
n'~)(y) are generalized equivalent to each other. In other words, the stationary conditions
of n'*)(y, 2),

o' (y,z) = 0, 3.3)
may be derived from the stationary conditions and augmented conditions of n‘=)(y):
én(y) =0, (3.4a)
z—f(y)=0. (3.4b)
Conversely, eqns (3.4a, b) can also be derived from eqn (3.3).

Proof. First, we will prove that eqn (3.3) can be derived from eqns (3.4a, b).
The variation of eqn (II) is
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on'*(y,z) = on'(y)+n L [z—f () Colz~f ()] dV. (3.3)

We have assumed that eqns (3.4a, b) are satisfied ; then substituting eqns (3.4a, b) into eqn
(3.5), eqn (3.3) can be obtained.

Secondly, it will be proved that eqns (3.4a, b) can be derived from eqn (3.3).

Because both dy and 6z are independent variations, both dy and é[z—f(y)] are inde-
pendent variations also. Since eqn (3.3) is assured, from eqn (3.5) we obtain

6n‘)(y) =0, (3.6)
Clz—f)=0. (3.7
Because C is a positive definite matrix, then from egn (3.7) we obtain

z—f(y) = 0. (3.8)

According to eqns (3.6) and (3.8), eqns (3.4a, b) can be proved.

Example 1. It is necessary to derive the augmented functional of Hellinger—Reissner
functional n,(u, o) according to pattern II.

Solution. The original nonconditional functional with less variables is

Tur(w,0) = j [6" (D u)—ic"ac—FTu] dV — J TTudS—- f (u-)"Le dS, (3.9
1% Sy Sy

the augmented condition of which is
e—ac=10 (in V). (3.10)

According to the transformation pattern II, the positive definite quadratic integral for
the augmented condition expression on the left side of eqn (3.10) should be written in the
same manner as eqn (3.2):

0 -_—J. l(e—20)"A(z—a0) dV. (3.11)

Substituting into eqn (II), the general form of transformed nonconditional functional with
more variables can be obtained as follows:

7 (u,0,8) = nyr(u, 6)+’,J‘y i(e—20)"A(s—a0) dV. (3.12)

If the parameter n in eqn (3.12) equals to + 1, special form of augmented functional
is obtained :

) (u,0,8)l,-+1 = Tur(n, 0)+ J‘yi(e—w)TA(s—aa) dv. (3.13)

In fact, this functional is the same as the functional n,w(u, o, 2) in Hu-Washizu principle.
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4. TRANSFORMATION PATTERN 1iI OF THE FUNCTIONAL (EQUIVALENT PATTERN)

The fcature of pattern I is to transform the nonconditional functional = into non-
conditional functional r, involving several arbitrary parameters:

n. = T+ Z']I’Qn (I")

in which »n; are arbitrary parameters, and Q; are the quadratic integrals constituted by
natural condition expressions of z in corresponding domains. In general, the new functional
n, is the general form of the functional which is equivalent to the original n. In the case of
degencration (when g, cquals a critical value n,,), |, _, degenerates into the nonconditional
functional with less variables. Some of the functional variables in the original functional
are transferred into the augmented variables in the new functional; some of the natural
conditions of the original functional are transferred into the augmented conditions of the
new functional. Thus the new functional and the original one are generalized equivalent
but not equivalent to each other.

Example 2. Derive the equivalent functional n,(u, &, &) of Hu-Washizu functional
nuw(l, &, 6) according to pattern IIl.

Solution. The Hu—Washizu functional is given in eqn (1.12), the natural conditions of
which are the equations which define the problems in small displacement theory of elasticity,
i.e. eqns (1.1) to (1.5).

As an example, the natural condition (1.3} is transformed according to pattern IIT. We
obtain

0, = J‘ 1(Ae—0)Ta(Ae—0) dV, @.n

T, = Tuw (W, 8,0)+1, J i(Ae—a)a(Ae—a) dV. 4.2)
|4

When #, is an arbitrary constant except — 1, n,, (u,¢,6) is the nonconditional func-
tional with three types of variables, and one parameter is involved in the functional.
When n, = -1,

nL'],Ir]|=-—| = TIHR(U,G); (43)

thus the new functional degenerates into the nonconditional functional with two types of
variables, ¢ degenerates into the augmented variable, and condition (1.3) the augmented
condition.

5. GENERALIZED VARIATIONAL PRINCIPLE INVOLVING SEVERAL ARBITRARY
PARAMETERS

Let the Hu—Washizu functional nyw(u, &, ¢) be the original functional. By use of its
five natural conditions (1.1)~(1.5), it is transformed according to pattern III. The more
general form of its equivalent functional may be obtained as follows:

7, (u,8,6) = Tyw(u,g,0)+ i e 5.1

im= |

in which Q, are the quadratic integrals constituted by five natural condition expressions on
the left side of eqns (1.1)-(1.5).
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According to the three natural condition expressions ¥, ¥,, ¥ in the volume domain
on the left side of eqns (1.1)-(1.3), six quadratic integrals may be constituted in the following
form:

_[ ¥ Cu¥i dV (k= 1,2,3). (5.2)

Choose the matrix C properly. The first six quadratic integrals may be obtained as follows:

,

0 = V%(As—-c)’a(As-a) dv,

o

r

Q.= | {(Du—g)"A(DTu—3s) dV,
Jv

o

Q= y%(D¢+F)T(D¢+F) dv,

]

Q.= | (Ae—0)"(s—D"u) dV,
| 4

r

Qs= | Do+F)"B(a—Asg) dV,

r

Q¢ = ) (Do +F)"BA(e~D7u) dV, (5.3)

in which

Bp 0 0 0 By B
B= 0 ﬁz 0 B 0O B .
0 0 B B, B O

Bi, Bz, B are arbitrary given constants.
By the natural conditions on boundary S, or S,, another eight quadratic integrals are
chosen:

Q1=f Hu—@)" (u—) ds,
s,

.
Qs = | (u—®)"L(oc—As¢) dS,
S

Qs = | (u—i)"LA(e—D"u) dS,

.
Q= ] (u—i)"(De+F) ds,
Sl

On=| {Le-T) (La-T) ds,

.
Q1= | La—T)'L(e—As)dS,

JS,
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Qs —~=J (Le—T)"LA(e—D"u) dS,
S,
Q= L (Lo—T) (Do +F)dS. (5.4)

Substituting eqns (5.3), (5.4) into eqn (5.1), we obtain

i4

n.(u,¢,0) = nyw(u,8,0)+ Z n:Q;

i |
= J {[=FTu+n i ) AD )]+ (1 +7,+n,+21,) 4" Ae
| 4

+[n:i6Tac +n,3(Do+F) (Do +F)+n5(Ba) (Do + F))
—(12+14)(A8) (D) +[(1 4+ n4)6” (D"u)—n(BAD™u)" (Do +F))
+[—(1+n,+n)e"6 — (15 —1n6) (BAe) (Do +F)]} dV

+ {In73(u—0)"(u~T)—n5(u~—i)"LAD"u]
~ (15— n9) (u—1)"LAe— (1 -5} (u~0)"Lo+1,0(u~ ) (Do +F)} dS -

)

+| {(-TTu+i@e—T)"[n,,(Le—T)+2n,;La]—1n,3(Lo—T)"LAD u

¥5,

—(M2=13) Lo —T)LAs+n,,(Lo—T) (Do +F)} dS. (5.3)

The functional . (u, , o) is equivalent to the Hu—Washizu functional nw(u, £, ¢). And
it is the general form of functional involving arbitrary parameters with three variables u, &,
¢ except the three degenerate cases listed below.

(1) The functional with two types of variables n,(u, 5)—the degenerate case in which
e is excluded.

It is known from eqn (5.5), if ¢ is excluded from functional x,, it may be assumed that

N2= —ts=1+n, s =N, fs = Yo, N2 =M. (5.6)

Then the following nonconditional functional =, (u, 6) involving several arbitrary par-
ameters with two types of variables (u, ) may be obtained:

(0, 0) = nur (0, 0)+ (1 +7, Q1 + Q2 — Q) +1:Q3+15(Qs+ Q) +1,0Q-
+18(Qs+ Qo) +110Q10+111 Q1 +112(Q 12+ Q13) +1m1aQis. (5.7)

(2) The functional with two types of variables n,(u, e)—the degenerate case in which
o is excluded.
If o is excluded from functional n,, it may be assumed that

na=—1, Ny =1, m=m=ns=fne=No=Nn=Nn2=N3=N,4=0 (5.8

Then the following nonconditional functional =, (u, 8) involving severa!l arbitrary par-
ameters with two types of variables (u, ) may be obtained :
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1, (u,8) = (uw — Qu+ Q) + 1202 +11Q7 +15Qs. (5.9
(3) The functional with single type of variable n, (u)—the degenerate case in which &

and o are excluded.
In functional n,, if 8 and ¢ are excluded, it may be assumed in eqn (5.5) that

m=ng=n=1, ny=-1,
Mm=n=ns=fNs=No=n=Na2="N3="04=0. (5.10)

Then the nonconditional functional =, (u) involving arbitrary parameters with single type
of variable u may be obtained as follows:

7, (0) = (tuw + Q2 — Qu+ Qs+ Q9)+ 1,07 = 7, (W) +1,Q4. (5.11)

(5.5), (5.7), (5.9) and (5.11) are nonconditional functionals involving arbitrary parameters
with three variables (u, g, ¢), two variables (u, @), (u, &) and single variable (u), respectively.

6. SIMPLE FORMS OF FUNCTIONALS INVOLVING ARBITRARY PARAMETERS

For the convenience of application, we consider simple forms of functionals involving
arbitrary parameters.

(1) Simple form of functional with three variables (u, ¢, ¢) involving three arbitrary
parameters.

Assume that in functional (5.5) all the parameters except 7, 3, 7, €qual to zero; the
following functional can be obtained :

7.1 (0,8,0) = Tgw +1Q | +1:02+1404. (6.1)

Equation (6.1) is a simple form of functional involving three arbitrary parameters with
three variables (u, &, ¢). The following cases:
@B l+m+n=0 and m+n,=0,

G) =0 and  my=—1, 6.2)

are degenerate cases of (6.1).

When different values of 7, 11, 7, are chosen, different special cases of functional (6.1)
can be obtained.

(a) When g, = 2, = 5, = 0, the Hu~Washizu functional nyw(u, , ¢) is obtained.
(b) When n, = 5, = 0, the functional proposed by Chien[9] is obtained :

ey (u,8,0) = J;[aT(DTu)-i- li-zﬂsTAx+ inaTac—(1 +11,)aTa-F'n] dv

- j (u-#)"Lo dS— I T7uds, (6.3)
S, S,

in which n, = —1 implies a degenerate case.
(c)Whenn, =1,n,=0,n=—1orn =n =1, n,= —1, the following functionals
are obtained, respectively :
n.2(u,8,0) = J. [e"(AD"u~0)+ic"ac—Fu) dV— J (u—i)"Lo dS— j T7u ds,
v S, S,
(6.4)
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n.5(u,8,6) = J [} (6—Ag)"a(6 —Ae)+ ;(D"u)"A(D"u)—FTu] dV

_J (u—i) Lo ds-J T'uds. (6.5)
S, Sy

Both functionals 7, ,(u, &, ¢) and 7, ;(u, &, 6) are as simple as nyw(n, &, &) and are equivalent
to it.

(2) Simple form of functional with two variables (u, ¢) involving one arbitrary par-
ameter.

Assume that in functional (5.7) all the parameters except #, are equal to zero; a simple
form of functional involving one arbitrary parameter with two variables (u, ) is obtained :

n.,(8,6) = nup(n,6)+ (1 +11,)J {(D"u—as)"A(D"u—ac) dV. (6.6)

Two special cases of functional (6.6) are given below :
(a) When n, = —1, the Hellinger-Reissner functional n,z(u, 6) is obtained.
(b) When n; = 1, we have

n.,(u,0) = J;[(DTu)TA(DTu)+%araa—-aT(DTu)—FTu] dv— J; T dS
—J (u—i)"Lo dS. (6.7)
Sy

If the boundary condition u—i = 0 (on §,) is satisfied, then the last term of (6.7) vanishes
and the functional M (u, 6) given by Oden[10] is obtained.

(3) Simple form of functional with two variables (u, &) involving one arbitrary par-
ameter.

Assume that in functional (5.9) all the parameters except #, are equal to zero ; a simple
form of functional involving one arbitrary parameter with two variables (u, &) is obtained :

7. (0, 8) = (uw — Qa+Qs)+120Q. (6.8)

When 1, = 0, a special case of (6.8) is obtained :
n.2(u,8) = tuw — Q4+ Qs

= f [e"TA(D ) —ie"Ae—FTu] dV— J T7u dS—- f (u—i)"LAe dS. (6.9)
1% Se Su

If Asin the last integral is replaced by 4, then the functional R,(u, &) given in [10] is obtained.
It seems that R,(u, &) is not a functional with two variables (u, &).
(4) Simple form of functional with single variable (u) involving one arbitrary parameter.
Functional (5.11) is a simple form of functional with single variable (u) involving an
arbitrary parameter n;. When », = 0, the nonconditional potential energy functional z,,(u)
given in (1.9b) is obtained as a special case of functional (5.11).
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